|
|||
|
|||
Test of building smart sensors yields big energy savingsTo reduce energy consumption in commercial buildings, computer scientists at the University of California, San Diego have come up with a way to use real-time occupancy sensors and computer algorithms to create smart heating, ventilation and air-conditioning (HVAC) systems. Based on early test results, the software- and sensor-based solution produced electrical energy savings of between 9.54 and 15.73 percent on their test deployment on one floor of a 5-floor campus building. “It’s clear that sensors and computing are key to reducing the demand for electricity in office buildings,” said Yuvraj Agarwal, a research scientist in UC San Diego’s Computer Science and Engineering (CSE) department. “Based on the test deployment, we estimate 40-50 percent in energy savings if we deployed our system across the entire CSE building. This is a significant real-world energy saving that comes while maintaining important quality-of-life measures related to building availability, lighting, comfort and appearance.”
Agarwal presented the project’s initial findings today in a
talk on “Duty-Cycling Buildings Aggressively: The Next Frontier in HVAC
Control”* at the 10th International Conference on Information Processing in Sensor Networks (IPSN) in Chicago. IPSN is one of several scientific meetings during Cyber-Physical Systems Week and is the premier conference for research in sensor systems. “Rising energy costs and damage to the environment have made scientists focus increasingly on major contributors to that consumption in the belief that even small improvements can translate into large overall savings,” said Rajesh Gupta, a co-author of the research and associate director of the UCSD division of the California Institute for Telecommunications and Information Technology (Calit2). “We focused initially on computing infrastructure, and that led us to thinking about how to use computers to improve the efficiency of existing systems that regulate when HVAC systems go on and off in buildings.”
Gupta, Agarwal and their colleagues had to look no further
than the CSE building where they work, and where HVAC systems usually
account for between 25 and 40 percent of total annual electricity load.
Like in most commercial buildings, the campus Energy Management System
sets HVAC systems on a ‘static occupancy schedule’, i.e., timed to
coincide with standard working hours (for the CSE building, from 5:15
a.m. to 10 p.m. on weekdays). “The static control algorithm is relatively primitive and it results in a lot of wasted energy during periods of low occupancy,” said Agarwal. “Our solution is a novel control architecture that uses a network of sensors to keep track in real time of which areas of the building are occupied.” To test their system, the UCSD researchers deployed an occupancy sensor network across an entire floor of the CSE building. The sensors detected several periods of low occupancy when HVAC systems were operating at full steam – and therefore wasting energy. Working with administrators of the campus EMS, the researchers used the real-time occupancy information from each sensor node to turn the floor’s HVAC systems on or off. This so-called aggressive duty-cycling of HVAC systems saved energy while still meeting building performance requirements. The cost of sensors and their deployment is a significant barrier that the team overcame with an in-house design that brought the cost of the sensor to below $10 — one-tenth the price of the cheapest commercial sensor. At that cost, the sensor network can make widespread monitoring and control possible inside buildings.
Instead of simply using passive-infrared (PIR) movement
sensors (which are typically used to turn on lights when someone is
detected entering an area), the UCSD experiment combined a PIR sensor
with a magnetic reed switch. A small magnet is fitted on the door so
that when the door is closed, the magnet and reed switch become
adjacent, thus detecting when a door is open or closed. In testing, the
combined occupancy sensor was accurate 96 percent of the time, with
minimal false positives (i.e., not mistakenly detecting someone’s
presence in an office when there is no one there). To be used widely in all types of new and existing buildings, “these occupancy sensors must be wireless and low power so that they are cost effective to deploy and can run on batteries for several years,” said Agarwal.
In addition to the design and implementation of a low-cost and
high-accuracy wireless occupancy sensor node, the UCSD researchers
designed a control architecture to actuate individual HVAC zones based
on occupancy information. Support for the research into aggressive duty-cycling came in part from the Multiscale Systems Center (MuSyC) under the Focus Center Research Program (FCRP) that is supported by DARPA/MARCO. Support also came from two NSF grants, and one from the San Diego Clean Tech Innovation and Commercialization Program, a partnership among the City of San Diego, UC San Diego’s von Liebig Center, San Diego State University, Clean Tech San Diego, and UCSD’s Sustainability Solutions Institute. Cyber-Physical Systems The HVAC paper is one of several delivered during Cyber-Physical Systems Week by researchers affiliated with the National Science Foundation-funded Variability Expedition. Yuvraj Agarwal is the executive director of the $10 million project, on which his co-author Rajesh Gupta is the principal investigator. Yuvraj Agarwal, Thomas Weng, Bharathan Balaji and Rajesh Gupta are all part of the Systems, Networking and Energy Efficiency (SYNERGY) Lab at UCSD founded in 2009 by Agarwal. Gupta also co-authored a paper delivered today during the ACM/IEEE Second International Conference on Cyber-Physical Systems. The topic: “Programming Support for Distributed Optimization and Control in Cyber-Physical Systems.” His co-authors included UCSD graduate student Kaisen Lin, and a team from UCLA led by electrical engineering professor Mani Srivastava (deputy director on the Variability Expedition). Another Variability Expedition co-PI, Steve Swanson, and fellow UCSD computer science professor Michael Taylor, co-authored “Conservation Cores: Energy-Saving Coprocessors for Nasty Real-World Code.” In an invited talk, Taylor presented the research as part of the ACM SIGPLAN/SIGBED Conference on Languages, Compilers, Tools and Theory for Embedded Systems (LCTES), one of the co-located conferences during Cyber-Physical Systems Week.
Date: 2011-04-13
Contact: Doug Ramsey
Original Article
http://www.universityofcalifornia.edu/news/article/25341
|
|||
|